Simplified neural network architectures for a hybrid speech recognition system with small vocabulary size
نویسندگان
چکیده
Recent studies suggest that a hybrid speech recognition system based on a hidden Markov model (HMM) with a neural network (NN) subsystem as the estimator of the state conditional observation probability may have some advantages over the conventional HMMs with Gaussian mixture models for the observation probabilities. The HMM and NN modules are typically treated as separate entities in a hybrid system. This paper, however, suggests that the a priori knowledge of HMM structure can be beneficial in the design of the NN subsystem. A case of isolated word recognition is studied to demonstrate that a substantially simplified NN can be achieved in a structured HMM by applying a Bayesian factorization and pre-classification. The results indicate a similar performance to that obtained with the classical approach with much less complexity in NN structure.
منابع مشابه
Exploring convolutional neural network structures and optimization techniques for speech recognition
Recently, convolutional neural networks (CNNs) have been shown to outperform the standard fully connected deep neural networks within the hybrid deep neural network / hidden Markov model (DNN/HMM) framework on the phone recognition task. In this paper, we extend the earlier basic form of the CNN and explore it in multiple ways. We first investigate several CNN architectures, including full and ...
متن کاملLong Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition
Long Short-Term Memory (LSTM) is a recurrent neural network (RNN) architecture that has been designed to address the vanishing and exploding gradient problems of conventional RNNs. Unlike feedforward neural networks, RNNs have cyclic connections making them powerful for modeling sequences. They have been successfully used for sequence labeling and sequence prediction tasks, such as handwriting ...
متن کاملAn Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition
The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The...
متن کاملSpoken Term Detection for Persian News of Islamic Republic of Iran Broadcasting
Islamic Republic of Iran Broadcasting (IRIB) as one of the biggest broadcasting organizations, produces thousands of hours of media content daily. Accordingly, the IRIBchr('39')s archive is one of the richest archives in Iran containing a huge amount of multimedia data. Monitoring this massive volume of data, and brows and retrieval of this archive is one of the key issues for this broadcasting...
متن کاملExperimental studies on continuous speech recognition using neural architectures with "adaptive" hidden activation functions
The choice of hidden non-linearity in a feed-forward multi-layer perceptron (MLP) architecture is crucial to obtain good generalization capability and better performance. Nonetheless, little attention has been paid to this aspect in the ASR field. In this work, we present some initial, yet promising, studies toward improving ASR performance by adopting hidden activation functions that can be au...
متن کامل